Security Model for Health Care Computing and Communication Systems

Anas ABOU EL KALAM, Yves DESWARTE
(Anas, deswarte)@laas.fr

Plan

- System security requirement definition
- Concepts for HCCS security policies
- Security model
- Conclusions and perspectives

Plan

- System security requirement definition
 - Sensitive information
 - Risks
 - Security requirements
- Concepts for HCCS security policies
- Security model
- Conclusions and perspectives
Security Model

HCCS Security (Security, Safety, Quality, Privacy)

- **Confidentiality**
 - The non-occurrence of unauthorized disclosure

- **Integrity**
 - The non-occurrence of inadequate alterations

- **Availability**
 - The readiness for usage

- **Accountability**
 - (Availability & Integrity) [operation, identity of the person who realized the operation ...]
 - (Availability & Integrity & confidentiality) [information + meta-information]

Conclusions and Perspectives

- **System security requirement definition**
- **Concepts for HCCS security policies**
 - Groups of objects
 - Roles in Teams
 - Context

- **Security model**

- **Conclusions and perspectives**
Roles / Groups of objects

Role: structure subjects
Role r: Permission p
User

Group of Objects (GO): structure objects
Action a GO go
Object m

Role: associate subjects that fulfill the same functions
GO: set of objects that satisfy a common property
- Logical criteria based on access rights
- Objects on which the same actions are realized
- E.g., patient of the unit X

Example

Resource-Unit-C5: Resource-Surgical-Unit: Clinical-resource
Surgical-Ward: Ward 2
Post: computer 10
Speciality-Record: PMF n

Groups of objects: advantages

- Facilitate security policy management/expression/comprehension
- Update easily the security policy when new subjects/objects are added to the system

Reduce complexity of access rights

Action 1
Object 1

Action NA
Object NO

Cost: N_A*N_O

Reduce administration errors

<table>
<thead>
<tr>
<th>relation</th>
<th>Aspect</th>
<th>Managed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Role, Permission), (action, group)</td>
<td>Relatively stable</td>
<td>Administrator</td>
</tr>
<tr>
<td>{User, role}, {objects, group}</td>
<td>Altered more often</td>
<td>Reception staff ...</td>
</tr>
</tbody>
</table>

Roles in Teams

Some differences with TMAC
- TMAC: binary relations: (user, role), (role, team)
- A user can activate any one of his roles in any one of his teams
- Our approach: ternary relation: (user, role, team)
- A user can activate a subset of his roles in each of the teams which he participates in

Why?
- For the same role, authorizations can differ from an organization to another
- The same user can activate a subset of his roles in each of the teams which he participates in

Role in Team

<table>
<thead>
<tr>
<th>Role</th>
<th>Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>RoleTeam</td>
</tr>
<tr>
<td>Bob: Physician</td>
<td>PhysicianCS: RoleTeam</td>
</tr>
<tr>
<td>NurseCS: RoleTeam</td>
<td></td>
</tr>
</tbody>
</table>

Context

Context of a role:
- Cardinality, static/dynamic mutual exclusion

Context of objects:
- Duration attribute for the storage of certain data; location attribute

User attributes:
- Specific authorization, temporary rights

Context of use:
- Healthcare process
- Purpose of use

Every access must belong to one of two cases
- the user’s team participates in the process treating the patient
- particular situation: declaration of a purpose

the activity of care has been already defined by authorized persons
Alphabet of the language

- **Constants**
 - Instances of security policy entities: users, roles, teams ...

- **Variables**
 - E.g.: \(u \in \text{Users} \) (\(u \) is a variable of type User), \(r \in \text{Roles} \), \(g \in \text{Groups of Objects} \)

- **Functions**
 - Describing/building terms \(\Rightarrow \) deriving information about their properties
 - \(\text{PMF} \): patient identity, \(\text{CP} \): identity, nurse report, diagnosis, prescriptions \(\Rightarrow \) Record

- **Predicate**
 - E.g.: \(\text{AUR}(u, r, t) \) is a relation symbol of type (user, role, team)

- **Actions**
 - E.g.: \(\text{TRANSMIT}(u, f, u') \), \(\text{CREATE}(u, t) \)

The language

\[
\begin{align*}
\mathcal{A}(t_1, \ldots, t_n) & : = \text{Predicate}(t_1, \ldots, t_n) \mid \text{Action}(t_1, \ldots, t_n) \\
\mathcal{F} & : = \mathcal{A}(t_1, \ldots, t_n) \mid \neg \mathcal{F} \mid \mathcal{F} \bigwedge \mathcal{F} \mid \mathcal{F} \bigvee \mathcal{F} \mid \mathcal{O}(\mathcal{F}) \mid \mathcal{P}(\mathcal{F}) \mid \mathcal{F} \bigcup \mathcal{F} \mid \mathcal{F} \bigcap \mathcal{F}
\end{align*}
\]

Truth conditions

- \(M, w \models \mathcal{O}(f) \Rightarrow [\forall w, r \mathcal{R}(w)] \Rightarrow M, w \models \mathcal{F} \)
 - \(f \) is true in every world \(w \) which \(w \) is in relation with (... in all possible worlds, ...)

- \(M, w \vdash \mathcal{P}(f) \Rightarrow [\exists w, r \mathcal{R}(w)] \Rightarrow M, w \models \mathcal{F} \)
 - It should be possible to reach a world in which \(f \) is true (... in some possible cases)

- \(M, w \models \mathcal{F} \Rightarrow [\forall w, r \mathcal{R}(w)] \Rightarrow M, w \not\models \mathcal{F} \)
 - None of the accessible worlds should allow to conclude that \(f \) is true (... none of the ...)

System description

What?

The functional aspects of the system that are relevant for security

How?

- Propositional logic operators
- Define the internal structure of the worlds
 - E.g.: \(q \Rightarrow r \) means in any world \(w \) where \(q \) is true, \(r \) is also true

Example

Role hierarchy

- \(\text{AR}(u, \text{physician}) \Rightarrow \text{AR}(u, \text{Clinical Staff}) \)
- \(\text{AR}(u, \text{nurse}) \Rightarrow \text{AR}(u, \text{Clinical Staff}) \)
- ...

Security properties

What?

Express security requirements (confidentiality, integrity and availability)

How?

- Modal operators \((P/O/R/F) \)
- Allow modifying the properties of the accessibility relations between the worlds

Example

\(\neg \text{AR}(u, \text{pharmacist}) \wedge \text{CREATE}(u, \text{prescription}) \)

- \(\Rightarrow \) forbids a pharmacist to create prescriptions
- \(\Rightarrow \) none of the possible evolutions of the system should allow to conclude that a pharmacist can create a prescription

Security rules

What?
Regulations ...

How?
- Modal formulas with at least one non modal clause
- Describe the link between the P/O/R/F and the state of the system

Example
- \(\text{ARec}(p, \text{Record}) \Rightarrow \text{P}[\text{READ}(p, \text{Record})] \)
 - \(\text{ARec}(p, \text{Record}) \): a predicate that associates each patient to his/her medical record
 - \(\Rightarrow \): every patient is permitted to read his/her medical record

\[\text{ARec}(\text{Betty}, \text{Record}) \rightarrow \text{W1} \]
\[\text{W} \rightarrow \text{W2} \rightarrow \text{READ(Betty, Record)} \]

Conclusions and perspectives

- **What to protect?** against whom/what? what do we need?
 - **Security policy**
 - Structure objects according to access right criterias \(\Rightarrow \) *group of objects*
 - Job performed by the user \(\Rightarrow \) *Role*
 - The relation between the HCP and the patient \(\Rightarrow \) *team/organization*
 - Normal access: strong authorization \(\Rightarrow \) *process of care*
 - Flexibility and accountability \(\Rightarrow \) *Purpose of use*

- **Security model**
 - Extending/adapting deontic logic \(\Rightarrow \) \(P/O/R/F + \) actions
 - Describing the system, expressing the security properties and the security rules

- **Reasoning** about our security model by using analytic tableaux
 - **Implementation** by using security mechanisms such as distributed capabilities (MAFTIA) or XML interpretation (univ. of Milan) ...

Questions

Wednesday, 28 May 03 IFIP SEC 03, Athens