Sécurité des systèmes d'information et de communication dans le domaine de la santé

Anas ABOU EL KALAM, Yves DESWARTE
{Anas, deswarte}@laas.fr

Approach

Plan

- System security requirement definition
- Concepts for HCCS security policies
- Security model
- Conclusions and perspectives

Security model

Concepts for HCCS security policies

Security model

Conclusions and perspectives
Sensitive information

Inputs...
- General Assembly of the United Nations: A/RES/45/95
- European Community directives: 95/46 97/66, 2002/58 ...

What?
- Personal data
- Resources and services (e.g., payment, emergency)
- ...

Security requirements

HCCS Security (Security, Safety, Quality, Privacy)

Confidentiality: the non-occurrence of unauthorized disclosure
Secrecy: the non-occurrence of unauthorized disclosure
Privacy: the non-occurrence of unauthorized disclosure

Integrity: the non-occurrence of inadequate alterations
Consistency, accuracy of data
Verification of data-entry validity

Availability: the readiness for usage
Response time: e.g., emergency
Perenniarity: Medical records must be kept for a long time ...

Accountability

System security requirement definition

Concepts for HCCS security policies

Motivation
- Basic models
- Or-BAC
- The context

Security model

Conclusions and perspectives
Motivation

Security Policies?

- Rules that satisfy contextual permissions/prohibitions
 - e.g., the context of urgency
- Rules that satisfy P/F/O/R
- Rules that are specific to the organization
 - Each sub-organization may have its own SP, ...

Basic models: HRU

- Subjects: active entities
- Objects: (active + non-active) entities
- Actions

But...
- When new subjects/objects/actions are introduced in the system?
 - the updating of the SP is quite complicated!
- Only permissions
 - F/O/R are not included !

Basic models: RBAC

Role: structure subjects

But...
- The concept of permission is primitive
 - For a given application, the RBAC model must be refined to make explicit the structure of permissions
- For the same role, authorizations can differ from an organization to another
- How to specify a P that depends on a given context?
 - All users that play a certain role will inherit the role permissions ...
 - but, if the physician does not treat the patient?

Or-BAC
Or-BAC: subjects and roles

- **Organizations**
 - An organized group of active entities (e.g., the intensive care unit of a given hospital)

- **Subjects**
 - Active entities, i.e., a user or an organization

- **Roles**
 - To structure the link between subjects and organizations
 - The roles “cardiologist,” “nurse” will be played by users
 - The roles “intensive care unit,” “rescue team” will be played by organizations
 - Make easier the update of the SP when new subjects are added to the system

Or-BAC: Objects and views

- **Objects**
 - Passive entities (e.g., data files, medical records)

- **Roles**
 - **structure subjects**
 - User i
 - Role r
 - Permission p
 - User j

- **View**
 - **structure objects**
 - **set of objects that satisfy a common property**
 - Logical criteria based on access rights
 - Characterize the ways objects are used in Orgs
 - Makes easier the update of the SP when new objects are added to the system

Or-BAC: Actions and activities

- **Action**
 - File Operations such as read, write, send, ...

- **Activity**
 - To abstract actions
 - To join actions that share the same principles
 - To be able to characterize organizations that structure differently the same activities

Examples

- Consider(Hospital A, read, consulting)
- Consider(Hospital B, select, consulting)

The context
Or-BAC: Contexts

- **What?**
 - Specify the concrete circumstances where organizations grant role permissions to perform activities on views
 - E.g., urgency, attending physician, etc.

- **Example**
 - Define(Hospital A, Bob, F1.doc, read, Urgency) = within the organization “hospital A”, the context “urgency” is true between the subject “Bob”, the object “F1.doc” and the action “read”.

The conditions required for a given context are formally specified by logical rules.

Context

- **Context of a role:**
 - Cardinality, static/dynamic mutual exclusion

- **Context of objects:**
 - Duration attribute for the storage of certain data; location attribute

- **User attributes:**
 - Specific authorization, temporary rights

- **Context of use**
 - Healthcare process
 - Purpose of use

 - the user’s team participates in the process treating the patient
 - Every access must belong to one of two cases
 - particular situation: declaration of a purpose

Healthcare process

Purpose of use

- **Purpose of use declaration**
 - role=healthcare provider
 - He has formerly treated the patient
 - Notification to patient

- **Diagnosis revision**
 - request made by an emergency ward patient wounded in a vital organ lack of personnel, ...
 - Read/Write PMF

- **Emergency**
 - High level Audit

FLEXIBILITY + RESPONSABILITY
Or-BAC: the model

- **Concrete Authorizations**
- **Subject** (User)
- **Object**
- **Organization**
- **Activity**
- **Role**
- **View**
- **Context**

SP level Abstract entities

Plan

- System security requirement definition
- Concepts for HCCS security policy

Security model

- New language
- Examples of rules
 - System description
 - Security properties
 - Security rules

Conclusions and perspectives

Tuesday, 01 July 03

Formal System

Alphabet of the language

- **Constants**
 - Instances of security policy entities: users, roles, teams...
- **Variables**
 - e.g.: $u \in$ Users (u is a variable of type User), $r \in$ Roles, $o \in$ Groups of Objects
- **Functions**
 - Describing/building terms: deriving information about their properties
 - PMF(patient identity, CP identity, nurse report, diagnosis, prescriptions) → Record
- **Predicate**
 - E.g.: $\text{AURT}(u, r, t)$ is a relation symbol of type (user, role, team)
- **Actions**
 - E.g.: $\text{TRANSMIT}(u, f, u'), \text{CREATE}(u, t)$

The language

- $\text{Af}(t_1, \ldots, t_n) ::= \text{Predicate}(t_1, \ldots, t_n) \mid \text{Action}(t_1, \ldots, t_n)$
- $f ::= Af(t_1, \ldots, t_n) \mid -f \mid f \land f \mid f \lor f \mid \text{Of} \mid \text{Pf} \mid \text{Ff} \mid \text{Rf}$

Truth conditions

- $M, w \models \text{Of} \iff [\forall w', w R w'] \Rightarrow M, w \models f$
 - f is true in every world w' which w is in relation with (\ldots in all possible evolutions, \ldots)
- $M, w \models \text{Pf} \iff [\exists w', w R w'] \Rightarrow M, w \models f$
 - f should be possible to reach a world in which f is true (\ldots in some possible cases)
- $M, w \models \neg f \iff [\forall w', w R w'] \Rightarrow M, w \not\models f$
 - None of the accessible worlds should allow to conclude that f is true (\ldots none of the \ldots)

- $\alpha[\text{WRITE}(\text{Sam, f1.txt})]$
- $\beta[\text{CREATE}(ext{Bob, Prescription})]$
- $\gamma[\text{AR}(ext{Alice, Nurse})]$

Formal System

New System

- $\text{WRITE}(\text{Sam, f1.txt})$
- $\text{CREATE}(ext{Bob, Prescription})$
- $\text{AR}(ext{Alice, Nurse})$
System description

What?
The functional aspects of the system that are relevant for security

How?
- Propositional logic operators
- Define the internal structure of the worlds
 - E.g.: q→r means in any world w where q is true, r is also true

Example
Role hierarchy
- AR(u, physician) ⇒ AR(u, Clinical Staff)
- AR(u, nurse) ⇒ AR(u, Clinical Staff)
 ...

Security properties

What?
Express security requirements (confidentiality, integrity and availability)

How?
- Modal operators (P/O/R/F)
- Allow modifying the properties of the accessibility relations between the worlds

Example
- F[AR(u, pharmacist) ∧ CREATE(u, prescription)]
 - ⇒ forbids a pharmacist to create prescriptions
 - ⇒ none of the possible evolutions of the system should allow to conclude that a pharmacist can create a prescription

Conclusions and perspectives

- What to protect? against whom/what? what do we need?

- Security policy
 - Structure objects according to access right criterias ⇒ Views
 - Job performed by the user ⇒ Role
 - The relation between the HCP and the patient ⇒ team/organization
 - Normal access: strong authorization ⇒ process of care
 - Flexibility and accountability ⇒ Purpose of use

- Security model
 - Extending/adapting deontic logic ⇒ P/O/R/F + actions
 - Describing the system, expressing the security properties and the security rules

- Reasoning about our security model by using analytic tableaux

- Implementation by using security mechanisms such as distributed capabilities (MAFTIA) or XML interpretation (univ. of Milan) ...
Thank you!

Questions?
Remarks?
Comments?
Advices?