Plan

- Introduction
- Analytic approach
- A new generic solution
- Conclusions

Introduction

- Privacy is a critical issue in many emerging applications
- Legislation:
 - A/RES/45/95, 95/46/CE, 2002/58/EC, 98/1165, ...
- Implementation:
 - Social security data in the US → Symmetric Keys
 - Medical data in France → Secret keys
 - Cancer data in Germany → Hybrid encryption (IDEA/RSA)
 - Statistical data in Switzerland → Hybrid encryption
- But... most of these solutions are developed empirically

Analytic approach

- Is it possible to develop a generic solution?

A new generic solution

Conclusions

Objectives & Requirements

Solutions characterization

Solutions
Methodology: needs

- **What?**
 - Express the User expectations, ...
 - Form not very explicit

- **Examples**
 - Both directly and indirectly nominative data should be anonymized
 - Using personal data → The patient consent
 - ...

Methodology: objectives

- **Anonymization objectives**
 - Reversibility → encryption
 - Irreversibility → one-way hash function
 - (once replaced by anonymous codes, the original nominative data are no longer recoverable)
 - Inversibility → disanonymization ⇒ exceptional procedure

- **Examples**
 - Medical data transmission & storage ⇒ Reversibility
 - Focused epidemiological studies ⇒ Inversibility
 - (sometimes, authorities ⇒ medical examiner, the inspector-doctor or a trustworthy advisory committee ⇒ need to re-identify the patients in some particular situations)

Methodology: requirements

- **Anonymization requirements**
 - Linking
 - (associating in time and space, one or several codes to the same patient)
 - temporal (always, sometimes, never)
 - spatial (international, national, régional, local)
 - Robustness
 - (concern exclusively illicit disanonymization)
 - reversion robustness
 - e.g., if the used cryptographic technique is not strong enough
 - inference robustness
 - e.g., age * sex * month of discharge from hospital ⇒ enough to identify a person
 - Example
 - Medical data transmission & storage ⇒ Reversion robustness

Methodology: solutions characterization

- **Type**
 - organizational procedure, Access control
 - cryptographic algorithm
 - one-way function

- **Plurality**
 - mono / double / multiple anonymizations

- **Interoperability**
 - Transcoding (manually)
 - translating (mathematically)
 - Anonymization system ⇒ another one
 - transposing (automatically)
Plan

- Objectives
 - Reversibility
 - Linking
 - Robustness

- Requirements
 - Type
 - Plurality
 - Interoperability

Analytic approach:

- A new generic solution
 - General scheme
 - Discussion

Conclusions

- Objectives
 - Reversibility
 - Linking
 - Robustness

- Requirements
 - Type
 - Plurality
 - Interoperability

- NEEDS

- SOLUTION CHOICE

Our solution: general scheme

- Hospital
- Processing center (project)
- End user

\[(T1) \rightarrow ID_{pat/Proj} = H(ID_{proj} / ID_{pat}) \]
\[(T2) \rightarrow ID_{auth(pat/Proj)} = (ID_{pat/Proj} \times K_{sk}) \]

Our solution: benefits?

- Generic, systematic and adaptable to different needs
 - The protection of the patient anonymous ID
 - Smart cards are sufficiently tamper-resistant,
 - \(ID_{pat}\) is randomly generated into the card
 - keep secret the patient identifier
 - \(H(ID_{proj} / ID_{pat})\) is calculated into the card
 - Protect the critical part of our process
 - No critical secret for all the population
 - The user anonymous ID depend only on (patient, project)
 - The anonymous ID differs from a project to another
 - The IDs are located in different places
 - The keys are held by different persons
 - The explicit patient consent
 - Use of the anonymized data
 - Reversing the anonymity

Our solution: discussion

- Regulating the data inversion
Our solution: Flexibility

- Merging data belonging to several establishments
 - Need: easily link data concerning every patient that has been treated in these hospitals

<table>
<thead>
<tr>
<th>Hospital A</th>
<th>Hospital B</th>
</tr>
</thead>
<tbody>
<tr>
<td>({IDA\text{pat}{Proj}} K_{\text{hospA}})</td>
<td>({IDA\text{pat}{Proj}} K_{\text{hospB}})</td>
</tr>
<tr>
<td>(K_{\text{hospA}})</td>
<td>(K_{\text{hospA}})</td>
</tr>
<tr>
<td>(K_{\text{hospAB}})</td>
<td>(K_{\text{hospAB}})</td>
</tr>
</tbody>
</table>

Encryption

Decryption

Conclusion

- Analytic approach
 - needs → Objectives → Requirements → Solutions
- Anonymization
 - Generic solution
 - Some privacy needs can be met by using smartcards

But also ...

- Organizational solutions
 - Risk analysis
 - Security policy
- Technical solutions
 - Suitable architecture
 - Access control mechanisms
 - IDS
 - ...

Plan

- Introduction
- Analytic approach
- A new generic solution
 - Conclusions

Thank you!

Questions?

Remarks?

Comments?

Advises?